Extremal problems and symmetrization for plane ring domains
نویسندگان
چکیده
منابع مشابه
Locally GCD domains and the ring $D+XD_S[X]$
An integral domain $D$ is called a emph{locally GCD domain} if $D_{M}$ is aGCD domain for every maximal ideal $M$ of $D$. We study somering-theoretic properties of locally GCD domains. E.g., we show that $%D$ is a locally GCD domain if and only if $aDcap bD$ is locally principalfor all $0neq a,bin D$, and flat overrings of a locally GCD domain arelocally GCD. We also show that the t-class group...
متن کاملExtremal Problems for Geometric Hypergraphs 1 Extremal Problems for Geometric
A geometric hypergraph H is a collection of i-dimensional simplices, called hyperedges or, simply, edges, induced by some (i + 1)-tuples of a vertex set V in general position in d-space. The topological structure of geometric graphs, i.e., the case d = 2; i = 1, has been studied extensively, and it proved to be instrumental for the solution of a wide range of problems in combinatorial and compu...
متن کاملExtremal Graph Problems, Degenerate Extremal Problems, and Supersaturated Graphs
Notation. Given a graph, hypergraph Gn, . . . , the upper index always denotes the number of vertices, e(G), v(G) and χ(G) denote the number of edges, vertices and the chromatic number of G respectively. Given a family L of graphs, hypergraphs, ex(n,L) denotes the maximum number of edges (hyperedges) a graph (hypergraph)Gn of order n can have without containing subgraphs (subhypergraphs) from L...
متن کاملExtremal First Dirichlet Eigenvalue of Doubly Connected Plane Domains and Dihedral Symmetry
We deal with the following eigenvalue optimization problem: Given a bounded domain D ⊂ R, how to place an obstacle B of fixed shape within D so as to maximize or minimize the fundamental eigenvalue λ1 of the Dirichlet Laplacian on D \ B. This means that we want to extremize the function ρ 7→ λ1(D \ ρ(B)), where ρ runs over the set of rigid motions such that ρ(B) ⊂ D. We answer this problem in t...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1996
ISSN: 0002-9947,1088-6850
DOI: 10.1090/s0002-9947-96-01546-2